Copied to
clipboard

G = C62.228C23order 288 = 25·32

73rd non-split extension by C62 of C23 acting via C23/C22=C2

metabelian, supersoluble, monomial

Aliases: C62.228C23, C3⋊Dic315D4, C6.110(S3×D4), C33(Dic3⋊D4), (C2×C12).208D6, (C22×C6).90D6, C6.99(C4○D12), C3217(C4⋊D4), (C6×C12).13C22, C6.Dic65C2, C6.11D1221C2, (C2×C62).67C22, C2.11(C12.59D6), C2.9(D4×C3⋊S3), (C2×C3⋊S3)⋊11D4, (C3×C22⋊C4)⋊6S3, (C2×C12⋊S3)⋊5C2, C22⋊C44(C3⋊S3), (C3×C6).232(C2×D4), C23.10(C2×C3⋊S3), (C2×C327D4)⋊8C2, (C32×C22⋊C4)⋊7C2, (C3×C6).115(C4○D4), (C2×C6).245(C22×S3), C22.43(C22×C3⋊S3), (C22×C3⋊S3).40C22, (C2×C3⋊Dic3).80C22, (C2×C4×C3⋊S3)⋊20C2, (C2×C4).6(C2×C3⋊S3), SmallGroup(288,741)

Series: Derived Chief Lower central Upper central

C1C62 — C62.228C23
C1C3C32C3×C6C62C22×C3⋊S3C2×C4×C3⋊S3 — C62.228C23
C32C62 — C62.228C23
C1C22C22⋊C4

Generators and relations for C62.228C23
 G = < a,b,c,d,e | a6=b6=c2=e2=1, d2=a3, ab=ba, cac=a-1, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece=a3b3c, ede=b3d >

Subgroups: 1260 in 282 conjugacy classes, 69 normal (29 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, C23, C23, C32, Dic3, C12, D6, C2×C6, C2×C6, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C3⋊S3, C3×C6, C3×C6, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C22×S3, C22×C6, C4⋊D4, C3⋊Dic3, C3⋊Dic3, C3×C12, C2×C3⋊S3, C2×C3⋊S3, C62, C62, Dic3⋊C4, D6⋊C4, C3×C22⋊C4, S3×C2×C4, C2×D12, C2×C3⋊D4, C4×C3⋊S3, C12⋊S3, C2×C3⋊Dic3, C327D4, C6×C12, C22×C3⋊S3, C2×C62, Dic3⋊D4, C6.Dic6, C6.11D12, C32×C22⋊C4, C2×C4×C3⋊S3, C2×C12⋊S3, C2×C327D4, C62.228C23
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C3⋊S3, C22×S3, C4⋊D4, C2×C3⋊S3, C4○D12, S3×D4, C22×C3⋊S3, Dic3⋊D4, C12.59D6, D4×C3⋊S3, C62.228C23

Smallest permutation representation of C62.228C23
On 144 points
Generators in S144
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)(109 110 111 112 113 114)(115 116 117 118 119 120)(121 122 123 124 125 126)(127 128 129 130 131 132)(133 134 135 136 137 138)(139 140 141 142 143 144)
(1 35 38 57 13 52)(2 36 39 58 14 53)(3 31 40 59 15 54)(4 32 41 60 16 49)(5 33 42 55 17 50)(6 34 37 56 18 51)(7 134 20 142 120 27)(8 135 21 143 115 28)(9 136 22 144 116 29)(10 137 23 139 117 30)(11 138 24 140 118 25)(12 133 19 141 119 26)(43 78 91 63 86 71)(44 73 92 64 87 72)(45 74 93 65 88 67)(46 75 94 66 89 68)(47 76 95 61 90 69)(48 77 96 62 85 70)(79 114 127 99 122 107)(80 109 128 100 123 108)(81 110 129 101 124 103)(82 111 130 102 125 104)(83 112 131 97 126 105)(84 113 132 98 121 106)
(1 139)(2 144)(3 143)(4 142)(5 141)(6 140)(7 60)(8 59)(9 58)(10 57)(11 56)(12 55)(13 30)(14 29)(15 28)(16 27)(17 26)(18 25)(19 33)(20 32)(21 31)(22 36)(23 35)(24 34)(37 138)(38 137)(39 136)(40 135)(41 134)(42 133)(43 123)(44 122)(45 121)(46 126)(47 125)(48 124)(49 120)(50 119)(51 118)(52 117)(53 116)(54 115)(61 111)(62 110)(63 109)(64 114)(65 113)(66 112)(67 106)(68 105)(69 104)(70 103)(71 108)(72 107)(73 99)(74 98)(75 97)(76 102)(77 101)(78 100)(79 87)(80 86)(81 85)(82 90)(83 89)(84 88)(91 128)(92 127)(93 132)(94 131)(95 130)(96 129)
(1 106 4 103)(2 107 5 104)(3 108 6 105)(7 96 10 93)(8 91 11 94)(9 92 12 95)(13 98 16 101)(14 99 17 102)(15 100 18 97)(19 90 22 87)(20 85 23 88)(21 86 24 89)(25 75 28 78)(26 76 29 73)(27 77 30 74)(31 80 34 83)(32 81 35 84)(33 82 36 79)(37 112 40 109)(38 113 41 110)(39 114 42 111)(43 118 46 115)(44 119 47 116)(45 120 48 117)(49 124 52 121)(50 125 53 122)(51 126 54 123)(55 130 58 127)(56 131 59 128)(57 132 60 129)(61 136 64 133)(62 137 65 134)(63 138 66 135)(67 142 70 139)(68 143 71 140)(69 144 72 141)
(1 67)(2 68)(3 69)(4 70)(5 71)(6 72)(7 106)(8 107)(9 108)(10 103)(11 104)(12 105)(13 65)(14 66)(15 61)(16 62)(17 63)(18 64)(19 112)(20 113)(21 114)(22 109)(23 110)(24 111)(25 125)(26 126)(27 121)(28 122)(29 123)(30 124)(31 47)(32 48)(33 43)(34 44)(35 45)(36 46)(37 73)(38 74)(39 75)(40 76)(41 77)(42 78)(49 85)(50 86)(51 87)(52 88)(53 89)(54 90)(55 91)(56 92)(57 93)(58 94)(59 95)(60 96)(79 135)(80 136)(81 137)(82 138)(83 133)(84 134)(97 119)(98 120)(99 115)(100 116)(101 117)(102 118)(127 143)(128 144)(129 139)(130 140)(131 141)(132 142)

G:=sub<Sym(144)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,35,38,57,13,52)(2,36,39,58,14,53)(3,31,40,59,15,54)(4,32,41,60,16,49)(5,33,42,55,17,50)(6,34,37,56,18,51)(7,134,20,142,120,27)(8,135,21,143,115,28)(9,136,22,144,116,29)(10,137,23,139,117,30)(11,138,24,140,118,25)(12,133,19,141,119,26)(43,78,91,63,86,71)(44,73,92,64,87,72)(45,74,93,65,88,67)(46,75,94,66,89,68)(47,76,95,61,90,69)(48,77,96,62,85,70)(79,114,127,99,122,107)(80,109,128,100,123,108)(81,110,129,101,124,103)(82,111,130,102,125,104)(83,112,131,97,126,105)(84,113,132,98,121,106), (1,139)(2,144)(3,143)(4,142)(5,141)(6,140)(7,60)(8,59)(9,58)(10,57)(11,56)(12,55)(13,30)(14,29)(15,28)(16,27)(17,26)(18,25)(19,33)(20,32)(21,31)(22,36)(23,35)(24,34)(37,138)(38,137)(39,136)(40,135)(41,134)(42,133)(43,123)(44,122)(45,121)(46,126)(47,125)(48,124)(49,120)(50,119)(51,118)(52,117)(53,116)(54,115)(61,111)(62,110)(63,109)(64,114)(65,113)(66,112)(67,106)(68,105)(69,104)(70,103)(71,108)(72,107)(73,99)(74,98)(75,97)(76,102)(77,101)(78,100)(79,87)(80,86)(81,85)(82,90)(83,89)(84,88)(91,128)(92,127)(93,132)(94,131)(95,130)(96,129), (1,106,4,103)(2,107,5,104)(3,108,6,105)(7,96,10,93)(8,91,11,94)(9,92,12,95)(13,98,16,101)(14,99,17,102)(15,100,18,97)(19,90,22,87)(20,85,23,88)(21,86,24,89)(25,75,28,78)(26,76,29,73)(27,77,30,74)(31,80,34,83)(32,81,35,84)(33,82,36,79)(37,112,40,109)(38,113,41,110)(39,114,42,111)(43,118,46,115)(44,119,47,116)(45,120,48,117)(49,124,52,121)(50,125,53,122)(51,126,54,123)(55,130,58,127)(56,131,59,128)(57,132,60,129)(61,136,64,133)(62,137,65,134)(63,138,66,135)(67,142,70,139)(68,143,71,140)(69,144,72,141), (1,67)(2,68)(3,69)(4,70)(5,71)(6,72)(7,106)(8,107)(9,108)(10,103)(11,104)(12,105)(13,65)(14,66)(15,61)(16,62)(17,63)(18,64)(19,112)(20,113)(21,114)(22,109)(23,110)(24,111)(25,125)(26,126)(27,121)(28,122)(29,123)(30,124)(31,47)(32,48)(33,43)(34,44)(35,45)(36,46)(37,73)(38,74)(39,75)(40,76)(41,77)(42,78)(49,85)(50,86)(51,87)(52,88)(53,89)(54,90)(55,91)(56,92)(57,93)(58,94)(59,95)(60,96)(79,135)(80,136)(81,137)(82,138)(83,133)(84,134)(97,119)(98,120)(99,115)(100,116)(101,117)(102,118)(127,143)(128,144)(129,139)(130,140)(131,141)(132,142)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,35,38,57,13,52)(2,36,39,58,14,53)(3,31,40,59,15,54)(4,32,41,60,16,49)(5,33,42,55,17,50)(6,34,37,56,18,51)(7,134,20,142,120,27)(8,135,21,143,115,28)(9,136,22,144,116,29)(10,137,23,139,117,30)(11,138,24,140,118,25)(12,133,19,141,119,26)(43,78,91,63,86,71)(44,73,92,64,87,72)(45,74,93,65,88,67)(46,75,94,66,89,68)(47,76,95,61,90,69)(48,77,96,62,85,70)(79,114,127,99,122,107)(80,109,128,100,123,108)(81,110,129,101,124,103)(82,111,130,102,125,104)(83,112,131,97,126,105)(84,113,132,98,121,106), (1,139)(2,144)(3,143)(4,142)(5,141)(6,140)(7,60)(8,59)(9,58)(10,57)(11,56)(12,55)(13,30)(14,29)(15,28)(16,27)(17,26)(18,25)(19,33)(20,32)(21,31)(22,36)(23,35)(24,34)(37,138)(38,137)(39,136)(40,135)(41,134)(42,133)(43,123)(44,122)(45,121)(46,126)(47,125)(48,124)(49,120)(50,119)(51,118)(52,117)(53,116)(54,115)(61,111)(62,110)(63,109)(64,114)(65,113)(66,112)(67,106)(68,105)(69,104)(70,103)(71,108)(72,107)(73,99)(74,98)(75,97)(76,102)(77,101)(78,100)(79,87)(80,86)(81,85)(82,90)(83,89)(84,88)(91,128)(92,127)(93,132)(94,131)(95,130)(96,129), (1,106,4,103)(2,107,5,104)(3,108,6,105)(7,96,10,93)(8,91,11,94)(9,92,12,95)(13,98,16,101)(14,99,17,102)(15,100,18,97)(19,90,22,87)(20,85,23,88)(21,86,24,89)(25,75,28,78)(26,76,29,73)(27,77,30,74)(31,80,34,83)(32,81,35,84)(33,82,36,79)(37,112,40,109)(38,113,41,110)(39,114,42,111)(43,118,46,115)(44,119,47,116)(45,120,48,117)(49,124,52,121)(50,125,53,122)(51,126,54,123)(55,130,58,127)(56,131,59,128)(57,132,60,129)(61,136,64,133)(62,137,65,134)(63,138,66,135)(67,142,70,139)(68,143,71,140)(69,144,72,141), (1,67)(2,68)(3,69)(4,70)(5,71)(6,72)(7,106)(8,107)(9,108)(10,103)(11,104)(12,105)(13,65)(14,66)(15,61)(16,62)(17,63)(18,64)(19,112)(20,113)(21,114)(22,109)(23,110)(24,111)(25,125)(26,126)(27,121)(28,122)(29,123)(30,124)(31,47)(32,48)(33,43)(34,44)(35,45)(36,46)(37,73)(38,74)(39,75)(40,76)(41,77)(42,78)(49,85)(50,86)(51,87)(52,88)(53,89)(54,90)(55,91)(56,92)(57,93)(58,94)(59,95)(60,96)(79,135)(80,136)(81,137)(82,138)(83,133)(84,134)(97,119)(98,120)(99,115)(100,116)(101,117)(102,118)(127,143)(128,144)(129,139)(130,140)(131,141)(132,142) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108),(109,110,111,112,113,114),(115,116,117,118,119,120),(121,122,123,124,125,126),(127,128,129,130,131,132),(133,134,135,136,137,138),(139,140,141,142,143,144)], [(1,35,38,57,13,52),(2,36,39,58,14,53),(3,31,40,59,15,54),(4,32,41,60,16,49),(5,33,42,55,17,50),(6,34,37,56,18,51),(7,134,20,142,120,27),(8,135,21,143,115,28),(9,136,22,144,116,29),(10,137,23,139,117,30),(11,138,24,140,118,25),(12,133,19,141,119,26),(43,78,91,63,86,71),(44,73,92,64,87,72),(45,74,93,65,88,67),(46,75,94,66,89,68),(47,76,95,61,90,69),(48,77,96,62,85,70),(79,114,127,99,122,107),(80,109,128,100,123,108),(81,110,129,101,124,103),(82,111,130,102,125,104),(83,112,131,97,126,105),(84,113,132,98,121,106)], [(1,139),(2,144),(3,143),(4,142),(5,141),(6,140),(7,60),(8,59),(9,58),(10,57),(11,56),(12,55),(13,30),(14,29),(15,28),(16,27),(17,26),(18,25),(19,33),(20,32),(21,31),(22,36),(23,35),(24,34),(37,138),(38,137),(39,136),(40,135),(41,134),(42,133),(43,123),(44,122),(45,121),(46,126),(47,125),(48,124),(49,120),(50,119),(51,118),(52,117),(53,116),(54,115),(61,111),(62,110),(63,109),(64,114),(65,113),(66,112),(67,106),(68,105),(69,104),(70,103),(71,108),(72,107),(73,99),(74,98),(75,97),(76,102),(77,101),(78,100),(79,87),(80,86),(81,85),(82,90),(83,89),(84,88),(91,128),(92,127),(93,132),(94,131),(95,130),(96,129)], [(1,106,4,103),(2,107,5,104),(3,108,6,105),(7,96,10,93),(8,91,11,94),(9,92,12,95),(13,98,16,101),(14,99,17,102),(15,100,18,97),(19,90,22,87),(20,85,23,88),(21,86,24,89),(25,75,28,78),(26,76,29,73),(27,77,30,74),(31,80,34,83),(32,81,35,84),(33,82,36,79),(37,112,40,109),(38,113,41,110),(39,114,42,111),(43,118,46,115),(44,119,47,116),(45,120,48,117),(49,124,52,121),(50,125,53,122),(51,126,54,123),(55,130,58,127),(56,131,59,128),(57,132,60,129),(61,136,64,133),(62,137,65,134),(63,138,66,135),(67,142,70,139),(68,143,71,140),(69,144,72,141)], [(1,67),(2,68),(3,69),(4,70),(5,71),(6,72),(7,106),(8,107),(9,108),(10,103),(11,104),(12,105),(13,65),(14,66),(15,61),(16,62),(17,63),(18,64),(19,112),(20,113),(21,114),(22,109),(23,110),(24,111),(25,125),(26,126),(27,121),(28,122),(29,123),(30,124),(31,47),(32,48),(33,43),(34,44),(35,45),(36,46),(37,73),(38,74),(39,75),(40,76),(41,77),(42,78),(49,85),(50,86),(51,87),(52,88),(53,89),(54,90),(55,91),(56,92),(57,93),(58,94),(59,95),(60,96),(79,135),(80,136),(81,137),(82,138),(83,133),(84,134),(97,119),(98,120),(99,115),(100,116),(101,117),(102,118),(127,143),(128,144),(129,139),(130,140),(131,141),(132,142)]])

54 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D4A4B4C4D4E4F6A···6L6M···6T12A···12P
order1222222233334444446···66···612···12
size1111418183622222241818362···24···44···4

54 irreducible representations

dim111111122222224
type+++++++++++++
imageC1C2C2C2C2C2C2S3D4D4D6D6C4○D4C4○D12S3×D4
kernelC62.228C23C6.Dic6C6.11D12C32×C22⋊C4C2×C4×C3⋊S3C2×C12⋊S3C2×C327D4C3×C22⋊C4C3⋊Dic3C2×C3⋊S3C2×C12C22×C6C3×C6C6C6
# reps1111112422842168

Matrix representation of C62.228C23 in GL6(𝔽13)

1200000
0120000
001000
000100
000011
0000120
,
1200000
0120000
0001200
0011200
00001212
000010
,
1200000
0120000
000100
001000
0000103
000063
,
010000
1200000
0012000
0001200
000050
000005
,
010000
100000
0012000
0001200
0000119
000042

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,12,0,0,0,0,1,0],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,12,12,0,0,0,0,0,0,12,1,0,0,0,0,12,0],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,10,6,0,0,0,0,3,3],[0,12,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,5,0,0,0,0,0,0,5],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,11,4,0,0,0,0,9,2] >;

C62.228C23 in GAP, Magma, Sage, TeX

C_6^2._{228}C_2^3
% in TeX

G:=Group("C6^2.228C2^3");
// GroupNames label

G:=SmallGroup(288,741);
// by ID

G=gap.SmallGroup(288,741);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,64,590,219,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=b^6=c^2=e^2=1,d^2=a^3,a*b=b*a,c*a*c=a^-1,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=a^3*b^3*c,e*d*e=b^3*d>;
// generators/relations

׿
×
𝔽